Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Comput Biol ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2298789

ABSTRACT

Testing and isolation of infectious employees is one of the critical strategies to make the workplace safe during the pandemic for many organizations. Adaptive testing frequency reduces cost while keeping the pandemic under control at the workplace. However, most models aimed at estimating test frequencies were structured for municipalities or large organizations such as university campuses of highly mobile individuals. By contrast, the workplace exhibits distinct characteristics: employee positivity rate may be different from the local community because of rigorous protective measures at workplace, or self-selection of co-workers with common behavioral tendencies for adherence to pandemic mitigation guidelines. Moreover, dual exposure to COVID-19 occurs at work and home that complicates transmission modeling, as does transmission tracing at the workplace. Hence, we developed bi-modal SEIR (Susceptible, Exposed, Infectious, and Removed) model and R-shiny tool that accounts for these differentiating factors to adaptively estimate the testing frequency for workplace. Our tool uses easily measurable parameters: community incidence rate, risks of acquiring infection from community and workplace, workforce size, and sensitivity of testing. Our model is best suited for moderate-sized organizations with low internal transmission rates, no-outward facing employees whose position demands frequent in-person interactions with the public, and low to medium population positivity rates. Simulations revealed that employee behavior in adherence to protective measures at work and in their community, and the onsite workforce size have large effects on testing frequency. Reducing workplace transmission rate through workplace mitigation protocols and higher sensitivity of the test deployed, although to a lesser extent. Furthermore, our simulations showed that sentinel testing leads to only marginal increase in the number of infections even for high community incidence rates, suggesting that this may be a cost-effective approach in future pandemics. We used our model to accurately guide testing regimen for three campuses of the Jackson Laboratory.

2.
Journal of pathology informatics ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1560088
3.
J R Soc Interface ; 18(184): 20210575, 2021 11.
Article in English | MEDLINE | ID: covidwho-1522457

ABSTRACT

Emerging epidemics and local infection clusters are initially prone to stochastic effects that can substantially impact the early epidemic trajectory. While numerous studies are devoted to the deterministic regime of an established epidemic, mathematical descriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review existing mathematical results on the size of the epidemic over time, and derive new results to elucidate the early dynamics of an infection cluster started by a single infected individual. We show that the initial growth of epidemics that eventually take off is accelerated by stochasticity. As an application, we compute the distribution of the first detection time of an infected individual in an infection cluster depending on testing effort, and estimate that the SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the UK early August 2020. We also compute a minimal testing frequency to detect clusters before they exceed a given threshold size. These results improve our theoretical understanding of early epidemics and will be useful for the study and control of local infectious disease clusters.


Subject(s)
COVID-19 , Epidemics , Humans , Probability , SARS-CoV-2 , Stochastic Processes
4.
Clin Infect Dis ; 73(Suppl 2): S138-S145, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1373634

ABSTRACT

BACKGROUND: Although much of the public health effort to combat coronavirus disease 2019 (COVID-19) has focused on disease control strategies in public settings, transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within households remains an important problem. The nature and determinants of household transmission are poorly understood. METHODS: To address this gap, we gathered and analyzed data from 22 published and prepublished studies from 10 countries (20 291 household contacts) that were available through 2 September 2020. Our goal was to combine estimates of the SARS-CoV-2 household secondary attack rate (SAR) and to explore variation in estimates of the household SAR. RESULTS: The overall pooled random-effects estimate of the household SAR was 17.1% (95% confidence interval [CI], 13.7-21.2%). In study-level, random-effects meta-regressions stratified by testing frequency (1 test, 2 tests, >2 tests), SAR estimates were 9.2% (95% CI, 6.7-12.3%), 17.5% (95% CI, 13.9-21.8%), and 21.3% (95% CI, 13.8-31.3%), respectively. Household SARs tended to be higher among older adult contacts and among contacts of symptomatic cases. CONCLUSIONS: These findings suggest that SARs reported using a single follow-up test may be underestimated, and that testing household contacts of COVID-19 cases on multiple occasions may increase the yield for identifying secondary cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Family Characteristics , Humans , Incidence , Motivation
5.
Infect Dis Model ; 6: 955-974, 2021.
Article in English | MEDLINE | ID: covidwho-1336464

ABSTRACT

Non-pharmaceutical interventions (NPI) were implemented all around the world in the fight against COVID-19: Social distancing, shelter-in-place, mask wearing, etc. to mitigate transmission, together with testing and contact-tracing to identify, isolate and treat the infected. The majority of countries have relied on the former measures, followed by a ramping up of their testing and tracing capabilities. We present here the cases of South Korea, Italy, Canada and the United States, as a look back to lessons that can be drawn for controlling the pandemic, specifically through the means of testing and tracing. By fitting a disease transmission model to daily case report data in each of the four countries, we first show that their combination of social-distancing and testing/tracing have had a significant impact on the evolution of their first wave of pandemic curves. We then consider the hypothetical scenario where the only NPI measures implemented past the first pandemic wave consisted of isolating individuals due to repeated, country-scale testing and contact tracing, as a mean of lifting social distancing measures without a resurgence of COVID-19. We give estimates on the average isolation rates needed to occur in each country. We find that testing and tracing each individual of a country, on average, every 4.5 days (South Korea), 5.7 days (Canada), 6 days (Italy) and 3.5 days (US), would have been sufficient to mitigate their second pandemic waves. We also considered the situation in Canada to see how a frequent large-scale asymptomatic testing and contact tracing could have been used in combination with vaccination rollout to reduce the infection in the population. This could offer an alternative approach towards preventing and controlling an outbreak when vaccine supply is limited, while testing capacity has been increasingly enhanced.

SELECTION OF CITATIONS
SEARCH DETAIL